
Noether symmetries for two-dimensional charged particle motion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 6837

(http://iopscience.iop.org/0305-4470/32/39/309)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 6837–6852. Printed in the UK PII: S0305-4470(99)04804-0

Noether symmetries for two-dimensional charged particle
motion

F Haas and J Goedert
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Abstract. We find the Noether point symmetries for non-relativistic two-dimensional charged
particle motion. These symmetries are composed of a quasi-invariance transformation, a time-
dependent rotation and a time-dependent spatial translation. The associated electromagnetic field
satisfies a system of first-order linear partial differential equations. This system is solved exactly,
yielding three classes of electromagnetic fields compatible with Noether point symmetries. The
corresponding Noether invariants are derived and interpreted.

1. Introduction

There exist several methods for the derivation of exact invariants (constants of motion or
first integrals) for dynamical systems [1]. Among these methods, special attention has been
focused on the use of Noether’s theorem [2, 3] due to its physical appeal. Noether’s theorem
establishes a link between the continuous symmetries of the action functional associated with
a dynamical system and its conservation laws. The classical examples of Noether’s theorem
are the conservation of energy associated with time-translation invariance, the conservation of
linear momentum associated with space-translation invariance and the conservation of angular
momentum associated with invariance under rotations.

In the present work, we investigate the Noether point symmetries for two-dimensional
non-relativistic charged particle motion. This class of systems is described by Lagrangians of
the form

L = 1
2(ẋ

2 + ẏ2) +A1(x, y, t) ẋ +A2(x, y, t) ẏ − V (x, y, t) (1)

where, in appropriated units,A = (A1(x, y, t), A2(x, y, t),0) is the vector potential and
V (x, y, t) is the scalar potential. The results presented here can be useful in the derivation of
exact time-dependent solutions of the Vlasov–Maxwell equations in plasma physics [4].

In the course of the search for Noether conserved quantities, we find that the general form
of Noether point symmetries for Lagrangians of the class (1) comprises only time-dependent
rescalings, rotations and spatial translations. Moreover, the associated electromagnetic fields
are constrained by a pair of linear, first-order partial differential equations. The form of this
pair of equations depends on the symmetry considered. Nevertheless, for the solution of these
equations, we may always resort to the use of canonical group coordinates, defined in section 3.
Canonical group coordinates are, in fact, a valuable tool for the systematic determination of
the general solution of the basic system of equations satisfied by the electromagnetic fields
compatible with Noether’s point symmetries. We find three categories of such electromagnetic
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fields, one corresponding to an energy-like constant of motion, one to an angular momentum-
like constant of motion and, finally, one with an associated linear momentum-like first integral.
These conserved quantities are gauge independent, a fact that is shown explicitly in all cases
treated here. This shows that the choice of gauge has no influence on the determination of
Noether’s conserved quantities, in contrast to what is sometimes claimed [5].

This paper is organized as follows. In section 2, we present Noether’s theorem for the case
of point symmetries. The condition for invariance of the action functional with a Lagrangian of
type (1) yields both the form of the Noether symmetries and the equations to be satisfied by the
electromagnetic field. These equations, listed in (34)–(36) below, are the basic equations to be
satisfied by the electromagnetic field in order for the corresponding Noether point symmetries
to exist. The system (34)–(36) is solved by use of canonical group variables for each type of
Noether symmetry. These canonical group variables are shown in section 3. The corresponding
solutions to system (34)–(36) is given in section 4. In order that the solutions thus obtained
qualify as true electromagnetic fields, the Maxwell equations are imposed for consistency.
In section 5, the Noether invariant associated with each symmetry is shown and interpreted.
Finally, section 6 is devoted to the conclusions.

2. Noether point symmetries

Noether’s theorem provides a link between continuous symmetries for the action functional

S =
∫
L dt (2)

and conserved quantities. In its original and more powerful formulation [2, 3], Noether’s
theorem considers dynamic symmetries involving velocities and higher derivatives. Here,
mainly for simplifying reasons, we restrict considerations to point transformations. In more
formal terms, we consider infinitesimal mappings of the form

x̄ = x + εη1(x, y, t) (3)

ȳ = y + εη2(x, y, t) (4)

t̄ = t + ετ(x, y, t) (5)

whereε is an infinitesimal parameter. It is useful to define the generator of the group of
symmetries associated with (3)–(5) as

G = τ ∂
∂t

+ η1
∂

∂x
+ η2

∂

∂y
. (6)

The generatorG appear frequently in what follows and it is useful in the definition of
canonical group coordinates, which plays a central role in the systematic determination of
the electromagnetic fields associated with the symmetries.

The condition for Noether symmetry reads [3]

τLt + η · Lq + (η̇ − τ̇ q̇) · Lq̇ + τ̇L = Ḟ (7)

where subscripts denote partial derivatives. In equation (7) and in what follows,

η = (η1, η2, 0) (8)

q = (x, y,0) (9)

F = F(x, y, t). (10)
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The condition for Noether symmetry ensures the invariance of the action functional under the
infinitesimal map (3)–(5), up to the addition of an irrelevant numerical constant. Now, as a
consequence, the Euler–Lagrange equations become formally invariant under the map (3)–(5)
and the associated Noether invariant reads

I = τ(q̇ · Lq̇ − L)− η · Lq̇ + F (11)

which, in the present case, has the form

I = τ( 1
2 q̇

2 + V
)− η · (q̇ +A) + F. (12)

Clearly, for point symmetries, the Noether invariant is at most quadratic in the velocity. This
reminds one of the work of Lewis [6], where he finds quadratic constants of motion for the
three-dimensional non-relativistic motion of a charged particle in an external electromagnetic
field. The work of Lewis, however, did not obtain the whole variety of solutions. Some of the
Noether invariants derived in section 4 of this paper do not fit into the framework of [6].

In what follows, we find all the Noether point symmetries associated with the Lagrangian
(1). The Noether point symmetries are identified by imposing the symmetry condition (7) and
the Noether invariants are constructed by use of equation (12).

We begin by identifying the Noether point symmetries associated with the Lagrangian
(31). InsertingL in Noether’s symmetry condition (7), we arrive at a polynomial in the
velocity components. The coefficients of all monomials of the formẋmẏn must be identically
zero. For instance, the coefficients ofẋ3 andẏ3 yield

ẋ3→ τx = 0 (13)

ẏ3→ τy = 0. (14)

The solution for (13) and (14) is

τ = ρ2(t) (15)

whereρ(t)an arbitrary function of time. Equation (15) is taken into account in the continuation.
The coefficients oḟx2ẏ andẋẏ2 give no new information, as they are identically zero. The

coefficients of the quadratic components of velocity yield

ẋ2→ η1x = ρρ̇ (16)

ẏ2→ η2y = ρρ̇ (17)

ẋẏ → η1y + η2x = 0. (18)

The general solution of (18) is

η1 = 0x η2 = −0y (19)

where0 = 0(x, y, t) is an arbitrary function. Inserting equation (19) into equations (16) and
(17), yields

0xx = −0yy = ρρ̇. (20)

The solution to equation (20) is a quadratic function of the spatial coordinates,

0 = 1
2ρρ̇(x

2 − y2)−�(t) xy + a1(t) x − a2(t) y + 00(t) (21)

for arbitrary functions of time�(t), a1(t), a2(t) and00(t).
By inserting the solution (21) into equation (19), we obtain

η1 = ρρ̇x −�(t)x + a1(t) (22)

η2 = ρρ̇y +�(t)y + a2(t). (23)
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Let us summarize our first results: up to terms quadratic in the velocity, the generator of
Noether point symmetries has the general form

G = GQ +GR +GT , (24)

where

GQ = ρ2(t)
∂

∂t
+ ρρ̇

(
x
∂

∂x
+ y

∂

∂y

)
(25)

is associated with quasi-invariance transformations [7],

GR = �(t)
(
x
∂

∂y
− y ∂

∂x

)
(26)

is associated with time-dependent rotations and

GT = a1(t)
∂

∂x
+ a2(t)

∂

∂y
(27)

corresponds to time-dependent spatial translations. It is also important to notice that, so far,
no constraint has been imposed on the electromagnetic fields.

The Noether symmetry condition, however, has not yet been fully taken into account. We
still must consider the terms linear in the velocity components, yielding

ẋ → Fx = GA1 + ρρ̇A1 +�A2 + (ρρ̈ + ρ̇2)x − �̇y + ȧ1 (28)

ẏ → Fy = GA2 + ρρ̇A2 −�A1 + (ρρ̈ + ρ̇2)y + �̇x + ȧ2. (29)

Moreover, the term independent of velocities gives

Ft = −GV − 2ρρ̇V +
(
(ρρ̈ + ρ̇2)x − �̇y + ȧ1

)
A1 +

(
(ρρ̈ + ρ̇2)y + �̇x + ȧ2

)
A2. (30)

The system (28)–(30) has a solutionF(x, y, t) if and only if the integrability conditions
Fxy = Fyx , Fxt = Ftx and Fyt = Fty are fulfilled. These requirements give
equations not for the electromagnetic potentials, but directly for the electric fieldE =
(E1(x, y, t), E2(x, y, t),0) and the magnetic fieldB = (0, 0, B(x, y, t)), defined by

E1(x, y, t) = −Vx − A1t (31)

E2(x, y, t) = −Vy − A2t (32)

B(x, y, t) = A2x − A1y. (33)

In fact, imposingFxy = Fyx yields

GB = −2ρρ̇B − 2�̇ (34)

which involves only the magnetic field. Imposition ofFxt = Ftx implies

GE1 = −3ρρ̇E1−�E2 −
(
(ρρ̈ + ρ̇2)y + �̇x + ȧ2

)
B + (ρ

...
ρ + 3ρ̇ρ̈)x − �̈y + ä1 (35)

whereasFyt = Fty implies

GE2 = −3ρρ̇E2 +�E1 +
(
(ρρ̈ + ρ̇2)x − �̇y + ȧ1

)
B + (ρ

...
ρ + 3ρ̇ρ̈)y + �̈x + ä2. (36)

Equations (34)–(36) are the equations to be satisfied by the electromagnetic fields
associated with Noether point symmetries. They constitute a system of linear, first-order,
coupled partial differential equations forE1, E2 andB. For each non-relativistic charged
particle motion under an electromagnetic field satisfying (34)–(36), there is an associated
Noether point symmetry, whose generator is given by equation (24). In the remaining of
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this work, we are essentially interested in finding all the solutions of the system of partial
differential equations (34)–(36). In other words, we are concerned with finding the most
general electromagnetic field for two-dimensional, non-relativistic charged particle motion
endowed with Noether point symmetries. It is interesting to note that, while Noether’s theorem
is formulated in terms of the action functional, which is gauge dependent, the final conditions
for Noether point symmetry involves only the physical fields and the symmetry generator and
not the potentials. This means that the choice of gauge does not play any role in the search for
Noether point symmetries. Another useful remark is thatB satisfies an equation decoupled
from the equations forE1 andE2, whereas the equations for the electric field do depend onB.
Thus, we must first solve (34) forB and afterwards solve (35) and (36) for the electric field.

The unknown functions are the electromagnetic potentialsA andV . Therefore, for any
solutionE,B of the system (34)–(36), we still have to solve equations (31)–(33) to obtain the
electromagnetic potentials. It turns out that the integrability condition for the system (31)–(33)
are the homogeneous Maxwell equations. Gauss’ law for magnetism is immediately satisfied
here. So, the only extra requirement that we must impose is Faraday’s law,

E2x − E1y +Bt = 0. (37)

With this last constraint, the solutionsE, B for the basic system (34)–(36) qualify as a true
electromagnetic field.

To treat the system (34)–(36) and to find its complete solution, we use canonical group
coordinates. These variables are be introduced in the section that follows.

3. Canonical group coordinates

Canonical group coordinates [8] are defined by imposing that the symmetry transformation
behaves merely like time translation. Denoting new coordinates by(x̄, ȳ, t̄ ), such a condition
means that, in canonical group coordinates,

G = ∂

∂t̄
(38)

where t̄ is the new time parameter. The equations which must be satisfied by any set of
canonical group coordinates are given by

Gx̄ = 0 Gȳ = 0 Gt̄ = 1. (39)

This is a set of uncoupled linear partial differential equations, which, for the generator (24), can
be solved in closed form by the method of characteristics. We find three classes of solutions,
listed below.

3.1. The caseρ 6= 0

Whenρ 6= 0, it is convenient to write

a1 = ρ(ρα̇1− ρ̇α1) (40)

a2 = ρ(ρα̇2 − ρ̇α2) (41)

for suitable functionsα1(t) andα2(t), defined in terms ofa1 anda2. Notice that forρ = 0 the
transformation (40) and (41) is meaningless and the case is treated separately.
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With the redefinition (40) and (41), we have the following canonical group coordinates:

t̄ =
∫ t

dµ/ρ2(µ) (42)

x̄ = (x − α1)

ρ
cosT +

(y − α2)

ρ
sinT + δ1 (43)

ȳ = (y − α2)

ρ
cosT − (x − α1)

ρ
sinT + δ2 (44)

where new functionsT = T (t), δ1 = δ1(t) andδ2 = δ2(t) were defined according to

T (t) =
∫ t

dµ�(µ)/ρ2(µ) (45)

δ1(t) =
∫ t

dµ
�(µ)

ρ3(µ)

(
α2(µ) cosT (µ)− α1(µ) sinT (µ)

)
(46)

δ2(t) = −
∫ t

dµ
�(µ)

ρ3(µ)

(
α1(µ) cosT (µ) + α2(µ) sinT (µ)

)
. (47)

As a particular case, let us consider the situation where the symmetry transformation does
not contain rotation, that is,� = 0. In that case, the canonical group variables (42)–(44) take
the form

t̄ =
∫ t

dµ/ρ2(µ) (48)

x̄ = (x − α1)

ρ
(49)

ȳ = (y − α2)

ρ
(50)

which are relevant in the study of time-dependent integrable systems [9]. Forα1 = α2 = 0,
the transformation (48)–(50) is known as a quasi-invariance transformation [7].

3.2. The caseρ = 0 and� 6= 0

The canonical group variables become, in this case,

x̄ = ((x − β1)
2 + (y − β2)

2
)1/2

(51)

ȳ = t (52)

t̄ = 1

�
tan−1

(
y − β2

x − β1

)
(53)

where we have defined

β1 = β1(t) = −a2/� β2 = β2(t) = a1/�. (54)

The variables̄x and t̄ are translated polar coordinates, the new time parameter plays the role
of an azimuthal angle and̄x plays the role of a radial coordinate.
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3.3. The caseρ = 0,� = 0 anda2 6= 0

The canonical group variables are now

x̄ = x − a1y/a2 (55)

ȳ = t (56)

t̄ = y/a2. (57)

We finally mention that the caseρ = 0,� = 0 anda1 6= 0 is strictly analogous to the last case
and deserves no special consideration.

In the following section, we obtain all the solutions for the basic system (34)–(36),
corresponding to each set of canonical group variables.

4. Electromagnetic fields

4.1. The caseρ 6= 0

Equation (34), which involves only the magnetic field acquires, in canonical group coordinates,
the form

Bt̄ = −2ρ ′

ρ
B − 2�′

ρ2
(58)

where the prime denotes total differentiation with respect tot̄ . The solution for (58) is

B = −2�

ρ2
+

1

ρ2
B̄(x̄, ȳ) (59)

whereB̄(x̄, ȳ) is an arbitrary function of the indicated arguments. Notice that the resulting
magnetic field is not necessarily homogeneous, since it can depend on the spatial coordinates
throughx̄ andȳ. This is a significant improvement on earlier results [10].

To find the electric field, we must solve the system (35) and (36), taking the solution (59)
into account. To solve (35) and (36), it is useful to consider the quantities61 and62 defined
by

61 = ρ3(E1 cosT +E2 sinT ) (60)

62 = ρ3(E2 cosT − E1 sinT ). (61)

This represents a rotation plus a rescaling of the electric field. The form (60) and (61) represents
a circularly polarized wave with time-dependent amplitude.

In the new variables, the system (35) and (36) decouples and can be cast into the form

∂61

∂t̄
= ∂ψ1

∂t̄

∂62

∂t̄
= ∂ψ2

∂t̄
(62)

where

ψ1 =
(
−ρ
′

ρ
(ȳ − δ2) + δ′2 −�(x̄ − δ1) +

1

ρ
(α′1 sinT − α′2 cosT )

)
B̄(x̄, ȳ)

+

(
ρ ′′

ρ
− 2

ρ ′2

ρ2
+�2

)
(x̄ − δ1)−

(
�′ − 2

ρ ′

ρ
�

)
(ȳ − δ2)

+
1

ρ

(
�′α1−�

(
α′1 +

ρ ′

ρ
α1

)
+ α′′2 − 2

ρ ′

ρ
α′2 +�2α2

)
sinT

+
1

ρ

(
−�′α2 +�

(
α′2 +

ρ ′

ρ
α2

)
+ α′′1 − 2

ρ ′

ρ
α′1 +�2α1

)
cosT (63)
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ψ2 =
(

+
ρ ′

ρ
(x̄ − δ1)− δ′1−�(ȳ − δ2) +

1

ρ
(α′1 cosT + α′2 sinT )

)
B̄(x̄, ȳ)

+

(
ρ ′′

ρ
− 2

ρ ′2

ρ2
+�2

)
(ȳ − δ2) +

(
�′ − 2

ρ ′

ρ
�

)
(x̄ − δ1)

− 1

ρ

(
−�′α2 +�

(
α′2 +

ρ ′

ρ
α2

)
+ α′′1 − 2

ρ ′

ρ
α′1 +�2α1

)
sinT

+
1

ρ

(
+�′α1−�

(
α′1 +

ρ ′

ρ
α1

)
+ α′′2 − 2

ρ ′

ρ
α′2 +�2α2

)
cosT . (64)

The solution to (62) is

61 = ψ1 + Ē1(x̄, ȳ) 62 = ψ2 + Ē2(x̄, ȳ) (65)

where, as indicated,̄E1 andĒ2 have no dependence ont̄ .
We are interested in the electric field, in physical variables. To obtain the physical field

we use the inverse of the transformation (60) and (61),

E1 = 1

ρ3
(61 cosT −62 sinT ) (66)

E2 = 1

ρ3
(62 cosT +61 sinT ). (67)

Substituting equations (66) and (67) into the solution (65) and transforming back to the original
variables(x, y, t), we obtain the electric fields

E1 = α̈1 +
ρ̈

ρ
(x − α1) +

�2x

ρ4
− (ρ�̇− 2ρ̇�)

y

ρ3
+
�

ρ3
(ρα̇2 − ρ̇α2)

+
1

ρ3

(
Ē1(x̄, ȳ) cosT − Ē2(x̄, ȳ) sinT

)
− 1

ρ4

(
ρρ̇(y − α2) + ρ2α̇2 +�x

)
B̄(x̄, ȳ) (68)

E2 = α̈2 +
ρ̈

ρ
(y − α2) +

�2y

ρ4
+ (ρ�̇− 2ρ̇�)

x

ρ3
− �

ρ3
(ρα̇1− ρ̇α1)

+
1

ρ3

(
Ē2(x̄, ȳ) cosT + Ē1(x̄, ȳ) sinT

)
+

1

ρ4

(
ρρ̇(x − α1) + ρ2α̇1−�y

)
B̄(x̄, ȳ). (69)

It still remains to take into consideration Faraday’s law, which, in our case, is equivalent
to equation (37). After lengthy calculations using the magnetic field (59) and the electric field
(68) and (69), we conclude that Faraday’s law only imposes that

Ē2x̄ − Ē1ȳ = 0. (70)

This last constraint is an equation that has the general solution

Ē1 = − ∂

∂x̄
V̄ (x̄, ȳ) Ē2 = − ∂

∂ȳ
V̄ (x̄, ȳ) (71)

whereV̄ (x̄, ȳ) is an arbitrary function of the indicated argument.
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In conclusion, we have obtained a very general class of electromagnetic fields yielding
Noether point symmetries. The magnetic field is given by equation (59) and the electric field
by equations (68) and (69), together with condition (71). The symmetry transformations has
the generator (24). The electromagnetic field involves several arbitrary functions, namely
ρ(t), α1(t), α2(t),�(t), B̄(x̄, ȳ) and V̄ (x̄, ȳ), wherex̄ and ȳ are defined by equations (43)
and (44).

Finally, the electric field may be represented in a much more compact way. Introducing
the vectors

α = (α1, α2, 0) (72)

Ω = (0, 0, �) (73)

Ē = (Ē1, Ē2, 0) (74)

B̄ = (0, 0, B̄) (75)

redefiningη

η = ρρ̇(q − α) + ρ2α̇ + Ω× q (76)

and using the rotation matrix

R(T ) =
( cosT − sinT 0

sinT cosT 0
0 0 1

)
(77)

we can represent the electric field by the form

E = 1

ρ4
(ρ(ρηt − ρ̇η) + η ·Ω) +

1

ρ3
R(T )Ē +

1

ρ4
B̄ × η (78)

whereĒ is given in terms of a scalar potential according to (71).

4.2. The caseρ = 0 and� 6= 0

In the case whereρ = 0, the symmetry transformation is composed of a rotation and a spatial
translation and has no rescaling part. The treatment presented in the last subsection is no longer
appropriate, because the limitρ = 0 of the canonical variables (42)–(44) is singular. We must
now use the canonical group variables (51)–(53). The steps to be carried out comprise: (a)
the calculation ofB using the basic equation (34), (b) the calculation ofE1 andE2 using the
basic equations (35)–(36) and (c) the imposition of Faraday’s law, which must be obeyed by
the resulting electromagnetic field.

Equation (34) forB, in canonical group variables (51)–(53), reads

Bt̄ = −2�̇(ȳ) (79)

which has the general solution

B = −2�̇(ȳ) t̄ + B̄(x̄, ȳ) (80)

whereB̄(x̄, ȳ) is an arbitrary function of the indicated arguments.
By the definition (53) of the new time parameter, however, it is clear thatt̄ is not a single-

valued function. Thus, the resulting expressionB in equation (80) is not well behaved if
�̇ 6= 0. Consequently, in order to stay with a physically meaningful result, we must impose
the constraint

�̇ = 0. (81)
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Without any loss of generality, we can also take

� = 1. (82)

The associated Noether symmetries now comprises a time-independent rotation and two time-
dependent spatial translations. The associated magnetic field, according to the solution (80)
and the restriction (81), has the form

B = B̄(x̄, ȳ). (83)

Putting this functional formB into the system (35) and (36), taking into accountρ = 0,� = 1
and the definition (54) ofβ1 andβ2, yields

E1t̄ = β̈2 − E2 + β̇1B̄(x̄, ȳ) (84)

E2t̄ = −β̈1 +E1 + β̇2B̄(x̄, ȳ). (85)

In these equations,̄x andȳ are formally parameters independent oft̄ . Consequently, it is not
difficult to obtain the solution, which reads

E1 = β̈1− β̇2B̄(x̄, ȳ) + Ẽ1(x̄, ȳ) cost̄ − Ẽ2(x̄, ȳ) sin t̄ (86)

E2 = β̈2 + β̇1B̄(x̄, ȳ) + Ẽ2(x̄, ȳ) cost̄ + Ẽ1(x̄, ȳ) sin t̄ (87)

whereẼ1 andẼ2 are arbitrary functions of̄x andȳ.
By defining new arbitrary functions

Ē1 = Ẽ1/x̄ Ē2 = Ẽ2/x̄ (88)

we obtain, in physical coordinates,

E1 = β̈1− β̇2B̄(x̄, ȳ) + (x − β1)Ē1(x̄, ȳ)− (y − β2)Ē2(x̄, ȳ) (89)

E2 = β̈2 + β̇1B̄(x̄, ȳ) + (x − β1)Ē2(x̄, ȳ) + (y − β2)Ē1(x̄, ȳ) (90)

wherex̄ andȳ are given in equations (51) and (52), respectively.
Faraday’s law now imposes

x̄Ē2x̄ + 2Ē2 = −B̄ȳ (91)

whose solution is

Ē2 = 1

x̄2

∂ψ

∂ȳ
B̄ = −1

x̄

∂ψ

∂x̄
(92)

whereψ = ψ(x̄, ȳ) is an arbitrary function.
In conclusion, the electromagnetic field is given by equations (83) and (89)–(90), with the

constraint (92). There remain four arbitrary functions, namelyE1(x̄, ȳ), ψ(x̄, ȳ), β1(t) and
β2(t), with x̄, ȳ defined in equations (51) and (52).

4.3. The caseρ = 0,� = 0 anda2 6= 0

The procedure to find the electromagnetic field is by now clear. We simply list the results. The
equation for the magnetic field is

Bt̄ = 0 (93)

or

B = B̄(x̄, ȳ) (94)
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with B̄ = B̄(x̄, ȳ) an arbitrary function of̄x andȳ, which are defined by equations (56) and
(57).

The equations forE1 andE2 are

E1t̄ = ä1(ȳ)− ȧ2(ȳ)B̄ (95)

E2t̄ = ä2(ȳ) + ȧ1(ȳ)B̄ (96)

with the solution

E1 = (ä1(ȳ)− ȧ2(ȳ)B̄(x̄, ȳ))t̄ + Ē1(x̄, ȳ) (97)

E2 = (ä2(ȳ) + ȧ1(ȳ)B̄(x̄, ȳ))t̄ + Ē2(x̄, ȳ) (98)

whereĒ1 andĒ2 are arbitrary functions of the indicated arguments. In physical coordinates,

E1 = ä1y

a2
− ȧ2y

a2
B̄(x̄, ȳ) + Ē1(x̄, ȳ) (99)

E2 = ä2y

a2
+
ȧ1y

a2
B̄(x̄, ȳ) + Ē2(x̄, ȳ) (100)

wherex̄ andȳ are defined in equations (55) and (56), respectively.
After solving the differential equations that arise from Noether’s symmetry condition, we

must verify what is the constraint imposed by Faraday’s law. After some calculation using
equations (94), (99) and (100) and the form (55)–(57) of the canonical group coordinates, we
conclude that Faraday’s law implies

B̄ȳ +

(
1

a2

(
a1Ē1 + a2Ē2 − ä1x̄ + ȧ2

∫ x̄

B(µ, ȳ) dµ

))
x̄

= 0. (101)

The solution, in terms of an arbitrary functionψ = ψ(x̄, ȳ), is

B̄ = ∂ψ

∂x̄
(102)

1

a2

(
a1Ē1 + a2Ē2 − ä1x̄ + ȧ2

∫ x̄

B̄(µ, ȳ) dµ

)
= −∂ψ

∂ȳ
(103)

where the last equation can be rewritten in terms of a new functionV̄ = V̄ (x̄, ȳ) according to

Ē1 = −V̄x̄ (104)

Ē2 = ä1

a2
x̄ − ȧ2

a2
ψ − ψȳ +

a1

a2
V̄x̄ . (105)

This completely determines the last class of solutions for the electromagnetic field.B is
given by equation (94) andE1 andE2 are given by equations (99) and (100). The functionsB̄,
Ē1 andĒ2, present in the solution, are given by equations (102) and (104), (105), in terms of
the arbitrary functionsψ(x̄, ȳ) andV̄ (x̄, ȳ) with x̄, ȳ defined in equations (55) and (56). The
arbitrary functionsa1(t) anda2(t) are also present in the electromagnetic field, so that four
arbitrary functions participate in the final solution.

5. Conserved quantities

The electromagnetic potentials, which are gauge dependent, are a basic ingredient in the
Noether invariant (12). However, the resulting Noether constant of motion is always
independent of gauge choice, as seen in the continuation.
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To find the Noether constant of motion corresponding to each point symmetry, we must
also solve equations (28)–(30) for the functionF(x, y, t) which appears in the definition
(12). The system (28)–(30) is solvable forF by construction, since the electromagnetic fields
derived in the last section satisfy the basic equations (34)–(36). These equations, in turn, are
the necessary and sufficient conditions for the existence of a solutionF , satisfying the system
(28)–(30).

Given the electromagnetic fields and the related symmetries, it is not difficult to find the
appropriate electromagnetic potentials and the associated functionF . We only show the results
pertaining to each type of solution.

5.1. The caseρ 6= 0

The vector potential for the magnetic field listed in (59) is

A = q ×Ω
ρ2

+
R(T ) · Ā(x̄, ȳ)

ρ
+∇λ (106)

for an arbitrary gauge functionλ = λ(x, y, t). The gauge functionλ is irrelevant in the
calculation of the magnetic field. However, it was kept in order to show explicitly the gauge
independence of Noether’s constant of motion. Furthermore,Ā = (Ā1(x̄, ȳ), Ā2(x̄, ȳ), 0) is
a vector satisfying

Ā2x̄ − Ā1ȳ = B̄ (107)

whereB̄ is defined in equation (59).
The scalar potential is

V = −(ρα̈− ρ̈α) · q
ρ
− ρ̈

2ρ
q2 − 1

ρ3
(ρα̇− ρ̇α)×Ω · q − 1

2ρ4
(Ω× q)2

+
1

ρ2
V̄ (x̄, ȳ) +

η · R(T ) · Ā(x̄, ȳ)
ρ3

− λt . (108)

The functionF is calculated using the electromagnetic potentials and equations (28)–(30).
The result is

F = 1
2(ρα̇− ρ̇α)2 + ρ̇(ρα̇− ρ̇α) · q + ρ(ρα̈− ρ̈α) · q

+
1

2
(ρ̇2 + ρρ̈)q2 +

1

ρ
(ρα̇− ρ̇α)Ω · q +Gλ. (109)

Notice the presence of the gauge functionλ in the last term of equation (109).
All the ingredients to construct the Noether invariant (12) are already obtained. We arrive

at

I = 1

2

(
ρ(q̇ − α̇)− ρ̇(q − α)− Ω× q

ρ

)2

+ V̄ (x̄, ȳ). (110)

Remarks.

(a) For� = 0, the invariant (110) recovers the two-dimensional version of an invariant derived
by Lewis [6], in his search for quadratic invariants for three-dimensional non-relativistic
charged particle motion. For� 6= 0, that is, when we also include rotations, our result is
new.
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(b) Interestingly, despite the dependence of the electromagnetic potentials and the function
F on the gauge functionλ, the resulting invariant (110) is gauge independent. This is
just what we expecteda priori, since the choice of gauge should have no influence on the
physical quantities.

To provide an interpretation of the invariant, we make a change of variables. Using
canonical group coordinates̄q = (x̄, ȳ, 0) andt̄ , the Lagrangian function reads

L = 1

ρ2
L̄(q̄′, q̄) +

dW

dt
(111)

where

L̄(q̄′, q̄) = 1
2 q̄
′2 + Ā(q̄) · q̄′ − V̄ (q̄) (112)

W = λ +
ρ̇q2

2ρ
+ (ρα̇− ρ̇α) · q

ρ
−
∫ t dµ

ρ2(µ)
(ρ(µ) α̇(µ)− ρ̇(µ)α(µ))2. (113)

The primes denote differentiation with respect tot̄ . The functionW defined by equation (113)
can be disregarded in the Lagrangian, as it only adds a total derivative. Moreover, usingt̄ as
the new time parameter, the action functional (2) reads

S =
∫
L̄(q̄′, q̄) dt̄ (114)

from which it is evident that̄L may be used as the Lagrangian for the motion described in
terms of canonical group coordinates. Indeed, usingL̄, the Lorentz equations become

x̄ ′′ = −V̄x̄(x̄, ȳ) + ȳ ′B̄(x̄, ȳ) (115)

ȳ ′′ = −V̄ȳ(x̄, ȳ)− x̄ ′B̄(x̄, ȳ) (116)

which are the equations for two-dimensional non-relativistic charged particle motion in a
time-independent electromagnetic field. We observe that the relation

q̄′ = dq̄

dt̄
= ρR−1(T ) ·

(
q̇ − η

ρ2

)
(117)

is useful to obtain the transformed Lagrangian and Lorentz equations.
The transformed equations of motion, being autonomous, have an associated energy-like

invariant, of the form

I = 1
2 q̄
′2 + V̄ (x̄, ȳ) (118)

which is precisely the Noether invariant (110) in transformed coordinates. Thus, the Noether
constant of motion is the energy expressed in the variables where the equations of motion are
autonomous.

5.2. The caseρ = 0 and� 6= 0

The vector potential is, in this case,

A = (y − β2,−(x − β1), 0)
ψ(x̄, ȳ)

x̄2
+∇λ (119)

whereλ = λ(x, y, t) is the gauge function. The scalar potentialV is now given by

V = −β̈1(x − β1)− β̈2(y − β2) + V̄ (x̄, ȳ)

+
1

x̄2

(
β̇1(y − β2)− β̇2(x − β1)

)
ψ(x̄, ȳ)− λt (120)
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where

V̄x̄ = −x̄Ē1(x̄, ȳ). (121)

The resulting functionF is

F = β̇2(x − β1)− β̇1(y − β2) +Gλ (122)

and the associated Noether invariant is

I = (y − β2)(ẋ − β̇1)− (x − β1)(ẏ − β̇2) +ψ(x̄, ȳ). (123)

To interpret Noether’s invariant, again we change variables. Let the new coordinates of
configuration space be(x̄, t̄). Using these variables, the Lagrangian becomes

L = L̄ +
dW

dȳ
(124)

where

L̄ = 1
2(

˙̄x2 + x̄2˙̄t 2)− ˙̄tψ(x̄, ȳ)− V̄ (x̄, ȳ) (125)

is a new Lagrangian and

W = λ + (β̇1 cost̄ + β̇2 sin t̄ )x̄ + 1
2

∫ t (
β̇2

1(µ) + β̇2
2(µ)

)
dµ. (126)

In this new description,(x̄, t̄) are the dependent variables andȳ is the independent variable.
In equation (124), it is apparent that the Lagrangian in the new coordinates can be taken

as simplyL̄, since the addition of a total time derivative does not influence the equations of
motion. Sincēt is a cyclic coordinate the momentum conjugate tot̄ ,

pt̄ = L̄˙̄t = x̄2˙̄t − ψ(x̄, ȳ) (127)

is a conserved quantity. This conserved quantity (127) is, apart from an irrelevant sign, the
Noether invariant (123), which we can be interpreted as the conserved momentum conjugated
to the cyclic coordinatēt .

5.3. The caseρ = 0,� = 0 anda2 6= 0

Now, the vector potential is

A = (0, ψ,0) +∇λ (128)

whereλ = λ(x, y, t) is the gauge function, while the scalar potential is

V = − ä1

a2
xy +

1

2a2
2

(a1ä1− a2ä2)y
2 + V̄ (x̄, ȳ) +

ȧ2y

a2
ψ(x̄, ȳ)− λt . (129)

Using these electromagnetic potentials, we arrive at the function

F = ȧ1x + ȧ2y +Gλ (130)

so that the Noether invariant is

I = −(a1ẋ + a2ẏ − ȧ1x − ȧ2y + a2ψ(x̄, ȳ)). (131)

Again Noether’s invariant is a gauge-independent quantity.
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For the interpretation of the invariant, we usex̄ and t̄ as new dependent variables andȳ
as a new independent variable. The Lagrangian can be expressed as

L = L̄ +
dW

dȳ
(132)

where now

L̄ = 1
2(

˙̄x2 + (a2
1 + a2

2)
˙̄t 2) + (a1 ˙̄x − ȧ1x̄)

˙̄t + a2ψ(x̄, ȳ)
˙̄t − V̄ (x̄, ȳ) (133)

is a new Lagrangian function, and,

W = λ + ȧ1x̄ t̄ + 1
2(a1ȧ1 + a2ȧ2)t̄

2. (134)

The functionW can be disregarded in the Lagrangian, as it entersL̄ merely in the form of
a total time derivative. For the LagrangianL̄, t̄ is a cyclic variable, yielding the conserved
momentum

pt̄ = L̄˙̄t = (a2
1 + a2

2)
˙̄t + a1 ˙̄x − ȧ1x̄ + a2ψ(x̄, ȳ) (135)

which, apart from an irrelevant sign, is the Noether invariant (131). In conclusion, the Noether
invariant may be interpreted as the momentum conjugated to the cyclic coordinatet̄ .

6. Conclusion

We have found the class of electromagnetic fields compatible with Noether symmetries for
Lagrangians of type (1), describing physically interesting non-relativistic charged particle
motion. The treatment comprises the complete resolution of the basic system of partial
differential equations (34)–(36) by the use of canonical group coordinates. There are three
classes of electromagnetic fields yielding action functionals endowed with Noether invariance,
as listed in section 4. These electromagnetic fields are consistent with Maxwell’s equations
and depend on several arbitrary functions. The corresponding Noether invariants were shown
explicitly in section 5, one in the form of an energy-like function (110) and two in the form of
momentum-like functions, equations (123) and (131).

For a possible extension of the present work, we mention the investigation of the fully
three-dimensional case. While trivial in principle, this extension may present, in practice,
difficult mathematical problems. As a further development, one can analyse the complete
integrability of the Lorentz equation corresponding to the electromagnetic fields associated with
Noether point symmetries. From Liouville’s theorem, two constants of motion are sufficient
for the complete integrability of the equations of motion of a Hamiltonian system with two
degrees of freedom, as in the present case. The explicit dependence on time does not modify
this statement [11]. In the present work, we have derived classes of electromagnetic fields
yielding just one constant of motion. For complete integrability, there is the need for a second
invariant. This quantity exist only for special forms, found within the classes of electromagnetic
fields constructed here. Consequently, the complete integrability of these systems remains an
open question. As a final remark, the Noether invariants derived here may be useful in the
construction of exact time-dependent solutions for the self-consistent Vlasov–Maxwell system
in plasma physics.
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